请登录

记住密码
注册

请登录

记住密码
注册

操作失败

duang出错啦~~

非常抱歉,

你要访问的页面不存在,

操作失败

Sorry~~

非常抱歉,

你要访问的页面不存在,

提示

duang~~

非常抱歉,

你要访问的页面不存在,

提示

验证码:

Dr. Marjorie Jones

职称:Professor

所属学校:Illinois State University

所属院系:Biochemistry

所属专业:Biochemistry

联系方式:(309) 438-2366

简介

Research Directions for the Jones' Lab: Choline is a molecule used to make the membrane component phosphatidylcholine. Although most organisms make their own choline, one class of parasitic protozoans, called Leishmania, is not able to do so and therefore must get the choline from their hosts. These parasitic protozoans infect more than 20-25 million people world-wide and some 350 million people are at risk since they live in areas where Leishmania diseases are endemic. At least 12 species of the genus Leishmania are human pathogens and other species infect animals such as horses, cows, dogs, as well as reptiles. Such diseases can be expressed as skin infections, infections in the mucus membranes of mouth and throat, as well as infections in the internal organs. There are very few good therapies currently being used to treat human Leishmania diseases. This is, in part, because the treatments are expensive, have severe side effects, and drug resistance is also developing. Thus a major area of research in the Jones' Lab is the use of unique inorganic and organic molecules such as choline derivatives as potential cytotoxic agents for Leishmania diseases. We test various compounds for their ability to affect the growth of these protozoans in culture. We specifically use the Leishmania tarentolae species which is not pathogenic for humans but is for reptiles. We can thus safely use this species which is easily cultured as our model system. Microscopic changes in cell shape, size, and motility as well as analysis for cell viability are done following addition of derivatives at various concentrations. We are working to determine the mechanism of cytotoxicity of the effective compounds. We are also testing some metal complexes (especially vanadium) to assess their potential toxicity for Leishmania. The long term goal is to develop these various classes of materials as selective pharmaceutical drugs to treat human or domestic animal Leishmania diseases.

职业经历

Research Directions for the Jones' Lab: Choline is a molecule used to make the membrane component phosphatidylcholine. Although most organisms make their own choline, one class of parasitic protozoans, called Leishmania, is not able to do so and therefore must get the choline from their hosts. These parasitic protozoans infect more than 20-25 million people world-wide and some 350 million people are at risk since they live in areas where Leishmania diseases are endemic. At least 12 species of the genus Leishmania are human pathogens and other species infect animals such as horses, cows, dogs, as well as reptiles. Such diseases can be expressed as skin infections, infections in the mucus membranes of mouth and throat, as well as infections in the internal organs. There are very few good therapies currently being used to treat human Leishmania diseases. This is, in part, because the treatments are expensive, have severe side effects, and drug resistance is also developing. Thus a major area of research in the Jones' Lab is the use of unique inorganic and organic molecules such as choline derivatives as potential cytotoxic agents for Leishmania diseases. We test various compounds for their ability to affect the growth of these protozoans in culture. We specifically use the Leishmania tarentolae species which is not pathogenic for humans but is for reptiles. We can thus safely use this species which is easily cultured as our model system. Microscopic changes in cell shape, size, and motility as well as analysis for cell viability are done following addition of derivatives at various concentrations. We are working to determine the mechanism of cytotoxicity of the effective compounds. We are also testing some metal complexes (especially vanadium) to assess their potential toxicity for Leishmania. The long term goal is to develop these various classes of materials as selective pharmaceutical drugs to treat human or domestic animal Leishmania diseases.

该专业其他教授