非常抱歉,
你要访问的页面不存在,
非常抱歉,
你要访问的页面不存在,
非常抱歉,
你要访问的页面不存在,
验证码:
职称:Associate Professor
所属学校:Carnegie Mellon University
所属院系:biology
所属专业:Biology/Biological Sciences, General
联系方式:412-268-6036
Ph.D. Computer Science, Columbia University Postdoctoral Appointments University of Pennsylvania Computational Biology Group Sloan Computational Biology Fellowship, Molecular Biology, Princeton University
Computational analysis of molecular sequence data is a key component in solving three critical biological problems of the 21st century: how genes interact to produce living cells, how gene malfunction causes disease and how complex, multicellular organisms evolved from simple, unicellular organisms. In my research, I use computational approaches to studying the role of gene duplication in the acquisition of new gene function and the evolution of vertebrate genomes. New genes arise through gene duplications, errors during cell division that result in extra copies of genes. These extra copies subsequently mutate to take on new functional roles in the cell. The duplication of large regions, ranging from chromosomal segments to the entire genome, is believed to have played a crucial role in early vertebrate evolution. According to the hypothesis, the new genes that resulted from these massive duplications are responsible for the evolution of innovations, such as skeletal structure, limbs, and a complex central nervous system, that distinguish vertebrates from other life forms. If we can understand how these genes acquired new function following duplication, we will have a better understanding of how we evolved and the role those genes play in vertebrates living today.