非常抱歉,
你要访问的页面不存在,
非常抱歉,
你要访问的页面不存在,
非常抱歉,
你要访问的页面不存在,
验证码:
职称:Professor of Psychology and Neurosurgery
所属学校:University of Michigan-Ann Arbor
所属院系:Psychology
所属专业:Physiological Psychology/Psychobiology
联系方式:734.763.3706
Education/Degree: Ph.D. University of Toronto
The central aim guiding our research is to understand the neural coding mechanisms in neural circuit representations of the incentive and hedonic properties of rewards. We demonstrated that neurons in the ventral pallidum encode the hedonic properties and incentive salience. We found that activation of mesolimbic circuits shifts neural coding from a mode responsive to predictive cues toward cue responses dominated by incentive motivational value. Furthermore, neural activity tracks the motivational value dynamically to follow changes in the physiological appetitive state that is relevant to reward. These findings suggest possible neural mechanisms underlying relapse in human addicts where incentive cues might trigger and “pull” individuals toward drug rewards. Currently, we are exploiting our findings on reward mechanisms to explore individual differences in the attractive power of reward cues and to translate the ideas into future clinical approaches. Some individuals are more likely to respond to and approach reward cues. Our initial findings suggest that neural responses to cues in these individuals are found in larger proportions of neurons and the activation profiles on responsive neurons are greater. We are now exploiting the sign tracking/goal tracking model to test these ideas in a Pavlovian Conditioned Approach paradigm in collaboration with colleagues in biopsychology. We believe the findings will have particular relevance in understanding why not all users of drugs become addicts. Our principal method is to record electrical activity of individual nerve cells while animals behave naturally or perform learned tasks. Experimental manipulations include: Pavlovian and instrumental training, diminished or boosted motivational drive states (e.g., diuretic salt depletion), mesolimbic activation (via sensitization and acute injections), and pharmacological stimulation (via systemic and intracranial injections of neurotransmitter agonists and antagonists).