非常抱歉,
你要访问的页面不存在,
非常抱歉,
你要访问的页面不存在,
非常抱歉,
你要访问的页面不存在,
验证码:
职称:Professor
所属学校:University of Nebraska-Lincoln
所属院系:Chemical & Biomolecular Engineering
所属专业:Chemical and Biomolecular Engineering
联系方式:402-472-9320
The Brand Laboratory is a traditional chemical engineering research group, investigating both new materials and new, more efficient materials production processes for thin films, microfibers (10 µm) and microparticles of commercial importance. The specific applications for these materials are radiation detection, advanced semiconductor and electronics devices, corrosion and wear resistant coatings, and catalytic support systems, with product morphology and performance controlled by process parameters. Current investigations are ongoing in three areas: supercritical processing, solid-state radiation detetectors, and polymers for harsh environments. Supercritical processing. Oxides and diamond-like carbon (DLC) films have been grown from a clean, environmentally-friendly process, using only ultra-pure supercritical water and inorganic precursors, such as graphite as the raw materials in a free-jet expansion deposition system. This deposition system is one of the few facilities in the world where solutions of high-temperature, high-pressure water and inorganic materials are studied, and it is unique in its capacity for varying both the electrochemical and physical environments to explore fundamental electrochemical phenomena in flowing deposition processes. Electrochemical effects and manipulating the electrochemical environment have recently been shown to be important. Resulting films have been robust, adhered well to a variety of substrates (metals, polymers, and silicon), and have definitely undergone a dissolution and subsequent precipitation, as shown by mass spectrometry, FTIR and electron diffraction and spectroscopy of the deposited films. Particles and microfibers have been produced in the same system by careful control of processing conditions. To predict and control product morphology as a necessary step to commercialization, we have developed a detailed process model, relating the thermodynamics, fluid mechanics, mass transport, electrokinetics and reaction and condensation kinetics to film and particle morphology, crystallinity, and uniformity. The fundamental knowledge of electrochemical effects in flowing systems has broader applications than the processing of high quality electronic materials. Results of this research on the electrochemical behavior of the high-temperature, high-pressure flowing aqueous solutions can be applied to the prevention of corrosion in power plants, and to geochemical processes, both for the understanding of natural mineral formation and for evaluating feasibility of geothermal energy recovery.