请登录

记住密码
注册

请登录

记住密码
注册

操作失败

duang出错啦~~

非常抱歉,

你要访问的页面不存在,

操作失败

Sorry~~

非常抱歉,

你要访问的页面不存在,

提示

duang~~

非常抱歉,

你要访问的页面不存在,

提示

验证码:

Evelyn Hu

职称:Tarr-Coyne Professor of Applied Physics and of Electrical Engineering

所属学校:Harvard University

所属院系:Electrical Engineering and Bioengineering

所属专业:Electrical and Electronics Engineering

联系方式:(617) 496-1385

简介

Our ability to modulate the materials at nanometer length scales allows us to modify the electronic or photonic energy states of that material, thus transforming their properties and applications. For example, modulating the dielectric constant of materials like GaAs, GaN or diamond, at the length scale of a wavelength, can produce exquisitely tuned optical filters, waveguides or a means to slow or store light itself. We can engineer the number and signature energies of the optical states of such ‘nanophotonic’ structures, and match them to optical sources, such as quantum dots, quantum wells or color centers in diamond. The results so far include lasers with record low threshold values, triggered single photon sources, enhanced extraction of light from InGaN light emitting diodes, and new, coupled light-matter states. The implications are far-ranging: from energy-efficient optical sources to exploration of quantum information processing. Sculpting nanostructures from solid state materials requires tools and processes that have high spatial precision, but which themselves introduce the minimum damage to the material. Our group has focused on developing such techniques, while at the same time exploring the ‘bottom-up’ formation of heterogeneous materials from nanoscale building blocks. Creating new materials from composites of semiconducting, insulating and metallic nanoparticles allows the formation of truly three-dimensional structures that can display improved functionality, such as broad, engineered optical absorption, or distributed carrier collection for a large area, efficient optical absorber. Important issues here are related to the nature of the interfaces between the nanoparticles, and controlling the ‘hierarchical’ architecture that determines the positions of the components. We have explored a variety of techniques, including a method of templating materials on a biological structure (virus), where the materials-specific linkers are specially identified peptides. We have used these to form metal-semiconductor hybrid materials.

职业经历

Our ability to modulate the materials at nanometer length scales allows us to modify the electronic or photonic energy states of that material, thus transforming their properties and applications. For example, modulating the dielectric constant of materials like GaAs, GaN or diamond, at the length scale of a wavelength, can produce exquisitely tuned optical filters, waveguides or a means to slow or store light itself. We can engineer the number and signature energies of the optical states of such ‘nanophotonic’ structures, and match them to optical sources, such as quantum dots, quantum wells or color centers in diamond. The results so far include lasers with record low threshold values, triggered single photon sources, enhanced extraction of light from InGaN light emitting diodes, and new, coupled light-matter states. The implications are far-ranging: from energy-efficient optical sources to exploration of quantum information processing. Sculpting nanostructures from solid state materials requires tools and processes that have high spatial precision, but which themselves introduce the minimum damage to the material. Our group has focused on developing such techniques, while at the same time exploring the ‘bottom-up’ formation of heterogeneous materials from nanoscale building blocks. Creating new materials from composites of semiconducting, insulating and metallic nanoparticles allows the formation of truly three-dimensional structures that can display improved functionality, such as broad, engineered optical absorption, or distributed carrier collection for a large area, efficient optical absorber. Important issues here are related to the nature of the interfaces between the nanoparticles, and controlling the ‘hierarchical’ architecture that determines the positions of the components. We have explored a variety of techniques, including a method of templating materials on a biological structure (virus), where the materials-specific linkers are specially identified peptides. We have used these to form metal-semiconductor hybrid materials.

该专业其他教授